레이더 (Radar: Radio Detection and Ranging)

-짧은 마이크로파를 사용하는 이유?

(1)직진 양호, 회절이 적어서 정확한 ()를 측정한다.

(2)지향성이 좋아서 방위분해능이 좋다 (특히 ()밴드 레이더가 유리)

(3)최소탐지거리가 짧다.

(4)()로 부터의 혼신이 적다. <->단, 단점 : ()잡음이 많고 눈,비가 올 때 불리하며 ()가 높아서 고출력 전원을 발생시키기가 어렵다.

-레이더의 용어

(1)(): 하나의 레이더가 발사되는 시간

(2)(): 1초에 발사되는 펄스의 개수 (송신장치의 Trigger Generator)가 결정

(3)펄스반복율: 단위시간당 펄스송신이 반복되는 횟수

(4)펄스반복주기 : 하나의 펄스가 발사되고 나서 다음 펄스가 발사될 때까지의 시간	
*펄스반복주기가 짧아지면, 화면의 ()는 좋아지지만, ()가 줄어든다.	
(5)첨두전력(송신전력): 마그네트론이 발진하는 순간의 출력.	
*첨두전력의 ()승근과 최대탐지거리는 비례한다> 예를들어, 최대탐지거리를 3배 들려줄려면 첨두전력을 ()으.	로.
(6)평균전력 : 펄스가 발사될때와 휴지시간(휴식시간)의 평균한 전력	
(7)충격계수 : 펄스의 성질을 나타내는 계수	
-첨두전력*펄스폭 = 평균전력*펄스반복주기	
-충격계수 = ()/첨두전력 = ()/펄스반복주기	
1. 레이더의 구성 (송신/송수신전환/수신)	
-송신장치 (1)트리거 발진기 : 레이더의 두뇌 역할. 직류의 펄스신호(=동기신호)를 발생시키며 ()를 결정	
->이때부터 레이더가 가동되기 시작	
(2)펄스 변조기 : 발진기로부터 받은 동기신호(직류 펄스신호)를 받아 ()과 ()을 발생시킨다.	
내부에 ()이라고 하는 회로를 여닫는 스위치(방전관)가 있다.	
(3)마그네트론 : 짧은 시간에 극히 강한 ()를 발생시키는 장치이다.	
-도파관 : 길이 35m 정도의 전파의 감쇄작 용 을 막는 관	
-송수신 전환장치 (1)TR스위치 : 송신시에 ()가 수신장치로 들어가는 것을 막아준다.	
(2)ATR스위치(=RT) : 수신시에 ()가 송신장치로 들어가는 것을 막아준다.	
-스캐너(=안테나) : 지향성 회전 공중선. 전파를 발사하고 수신하는 역할을 하며 1분에 ()회 정도 회전한다.	

- -수신장치 (1)클라이스트론: 레이더의 ()로, 중간주파수를 생성하기 위한 또다른 주파수를 만들어낸다.
 - (2)AFC(자동주파수 제어장치): 중간주파수가 일정하게 유지되도록 조절하는 장치
 - (3)혼합기(Mixer): 실제로 중간주파수를 만드는 장치. 안테나에 수신된 반사신호와 클라이스트론이

만들어낸 주파수를 서로 mix하여 ()를 만든다.

-지시기(=화면, 스코프): 탐지되는 모든 물표를 나타내기 위해 평면표시방식()를 채용하고 있다.

아테나(스캐너)가 1회전할 때, 화면 위의 ()도 같이 1회전하며 화면이 업데이트 된다.

2.레이더의 특징

장점(1)전 주위의 물표 및 지형을 지시기에 표시하며 시계가 불량할때도 이용할 수 있다.

- (2)()의 중심 및 진로를 파악할 수 있다.
- (3)()송신국을 필요로 하지 않는다.
- (4)타선의 상대방위를 알 수 있어 ()예방에 효과적이다.
- (5)(): 한가지 물표로 위치를 구할 수 있다.
- 단점(1)다른 기기에 비해 이용범위가 ()편이다.
 - (2)compass에 비해 ()의 정확도가 떨어진다.
 - (3)영상 판독에 기술이 필요하다.
 - (4)선박의 송신 장치가 필요하며, 전원이 고장나면 곤란하다.
 - (5)소형선, 어선, 부표등이 탐지되지 않을때도 있다.

3. 레이더의 화면 표시방식

(1)진방위 지시방식(North Up)

화면의 위쪽(상방)은 ()을 가리키고 선수휘선은 ()를 표시한다. 화면이 ()이어서 방위측정에 유리하다. 변침(alter course)을 하게 되면 ()은 위치가 그대로이고 ()만 돌아가기 때문에 해도와의 비교가 쉽다. 물표는 ()방위로 표시된다. => 변침이 잦은 연안항해, 협수도 등에 유리하다 (<-화면이 안정적이기 때문)

(2)상대방위 지시방식(Head Up)

화면의 위쪽은 ()로 고정되어있고 선수휘선 역시 고정되어 움직이지 않는다. 화면이 ()이어서 방위측정하기가 불리하며 변침(alter course)을 하게 되면 물표의 영상은 변침한 방향의 ()방향으로 돌아가게 된다(=육안) 물표의 ()방위가 표시되어 충돌 예방에 효과적이다. => 눈으로 보는 것과 화면이 똑같기 때문에 교통량이 많거나 대양항해시에 유리하다.

(참고)(3)침로상방 지시방식

진방위 지시방식의 ()이라는 장점과 상대방위 지시방식의 ()이라는 장점을 합쳤다. 선수휘선은 ()를 설정해둔 것이기 때문에 변침할시에 선수휘선이 움직여서 선수휘선을 다시 ()도로 세팅해주어 야 한다. way point를 지나 '기준침로'를 재설정 해줄때는 ()을 다시 세팅해주어야 한다.

```
**레이더의 설비기준***
(1)항해용 레이더(반드시 X밴드 레이더)를 1대 설치해야 하는 선박
-총톤수 30톤 이상이거나 최대속력 ( )노트 이상의 여객선
-총톤수 100톤 이상의 일반선박
-길이 ( )m이상의 어선
(2)총톤수 ( )톤 이상의 선박은 X밴드 또는 S밴드 레이더 중 1대를 추가로 설비해야 한다.
4.ARPA(Automatic Radar Plotting Aids) 자동 레이더 플로팅 장치
총톤수 ( )톤 이상의 선박은 반드시 설치해야 한다.
5.레이더의 성능(최대탐지거리, 최소탐지거리, 방위분해능, 거리분해능)
(1)최대 탐지거리 (레이더가 최대로 탐지할 수 있는 거리로, 거리가 길수록 성능이 좋다.)
( )이 길수록 최대탐지거리가 길어지기 때문에 ( )이 길수록 최대탐지거리가 길어지고
주파수와 ( )가 작을수록 최대탐지거리가 길다.
   )빆폭이 ( )을수록 최대탐지거리가 길다.
안테나의 높이가 높고, 안테나의 개구면적이 크고, 안테나의 크기가 클수록 최대탐지거리가 긴데, 다만
아테나의 회전속도는 ( ) 최대탐지거리가 길다. ->왜?
첨두전력의 ( )승근과 최대탐지거리는 비례한다.
물표의 반사특성이 좋고 반사면적이 ( ) 최대탐지거리가 길다.
```

```
(2)최소탐지거리 (레이더가 탐지할 수 있는 최소의 거리로, 최소탐지거리가 짧을수록 성능이 좋다.)
펄스폭의 약 ( )에 해당하는 거리가 최소탐지거리이다. 따라서, ( )이 짧을수록 최소탐지거리가 짧다.
( ) | 기본이 ( ) 수록 최소탐지거리가 짧다.
회점의 크기가 ( )수록 최소탐지거리가 짧다.
TR관의 회복속도가 ( )수록 최소탐지거리가 짧다.
(주의)STC를 사용하면 최소탐지거리가 ( )진다.
(3)방위분해능(Bearing Resolution)
본선으로부터 같은거리(=동심원상)에 있는 인접한 두 물표의 ( )를 분해하는 능력이다.
가장 영향을 많이 미치는 것은 (1)( )과 (2)( )이다.(->(2)가 영향을 미치는 것은?
*목표물 영상은 ( )의 1/2만큼 ( )로 확대되어 나타나기 때문에, 섬같이 큰 물표의 경우에는
( )의 1/2만큼 안쪽으로 측정하고, 작은 영상을 측정할때는 그냥 ( )을 측정하여 방위를 측정한다.
*(방위/거리 분해능 공통) Gain(수신감도)을 적당히 낮게 하고 거리선택 스위치를 ( )로 할수록 분해능이 좋다진다.
(4)거리분해능(Range Resolution)
같은 방위상에 있는 가까운 두 물체의 ( )를 분해하는 능력이다.
가장 영향을 많이 미치는 것은 (1)( )과 (2)( )이다.
*두 물표 사이에 떨어져있는 거리가 펄스폭의 ( )이상이어야 거리를 분해할 수 있다.
(그래서 펄스폭을 짧게 할수록 거리분해능이 좋아진다. -> 단, 단점은 ( )가 짧아진다.
따라서 대부분의 최신용 레이더는 근거리/원거리 탐지에 따라 적절하게 펄스폭과 펄스반복주파수가
동시에 바뀌게끔 설계되어 있다.)
```

6. 기상상태에 따른 굴절현상
(1)초굴절(Super Refraction) : 전파가 ()로 휜다> 탐지거리가 ()진다.
위는 (), 아래는 ()다.
(),()부근에서 주로 발생한다.
고도가 높아질수록(->하늘 높이 올라갈수록) 온도가 떨어지는 비율(=온도저하율)이 표준보다 ()하거나
고도가 높아질수록 상대습도가 ()하는 경우에 일어난다. (->왜? 위로 갈수록 따뜻해서)
—— I I I I I I I I I I I I I I I I I I
(2)아굴절(Sub Refraction) : 전파가 ()로 휜다> 탐지거리가 ()진다.
위는 (), 아래는 ()다.
(),()에서 주로 발생한다.
(
방위분해능과 관련된 오차 (5)
-중심차 : 레이더 화면 영상의 중심과, 소인선의 중심이 일치하지 않아서 생긴다.
음극선관의 자기 차폐장치가 불안정할 때, 자차원인과 같이 선수방위변화, 위도변화 등이 있을 때
전자beam이 편향하여 중심차가 생길 수 있다> 중심조정기를 이용하여 조정
*편향한 방향과 물표의 방위가 ()에 가까울수록 오차는 커진다.
*물표가 화면 중심에 ()수록 오차는 커진다.
*정확한 방위를 측정하기 위해서는 물표가 화면의 ()부분 바로 아래에 나타나 눈금바로 밑에 오도록
하는 것이 좋다. (Range Scale을 ()한다> 착각 주의)
-시차 : 화면을 위에서 똑바로 내려다 보지 않고 화면을 비스듬이 보아 생기는 오차이다.

- -동기오차 : ()의 주축방향과 ()의 방향이 일치하지 않아 생기는 오차이다.
- -선수지시선 오차 : 선수지시선이 실제의 선수방향과 다르게 나타나서 생기는 오차이다.
- -선체 경사에 의한 오차 : ()에서 최대가 된다(=상한차)

7. 물체의 반사 특성

- 물체 표면과 레이더 전파가 만나는 각이 ()일수록 좋다. 물체의 표면은 어느정도 굴곡이 있는 것이 측정하기 좋지만, 다만 위처럼 각도가 ()일 경우에는 매끄러운 면이 더 반사특성이 좋다.
- 물표의 높이가 ()수록, 크기가 ()수록 좋다.
- 물체의 구성이 청수(fresh water)보다 ()와 같이 전기가 통하는 물질일수록 좋다. (그래서 얼음은 소금기가 없기 때문에 해수면에 비해서 반사세기가 떨어진다)
- FRP(강화플라스틱, 섬유강화플라스틱 선박은) 레이더 전파를 그대로 통과시켜 버리기 때문에 잘 나타나지 않는다.
- 물표 영상의 크기가 ()수록, 움직이는 물표보다 ()해있는 물표가 방위측정하기 더욱 유리하다. 또한 화면이 안정적인 진방위 지시방식이 유리하다.
- 8. 레이더의 방해현상 (거짓상 아님)
- (1)해면반사 : 본선 주위 ()마일 정도 근거리에 생기며 ()를 이용하여 제거한다.
- (2)눈, 비: FTC를 이용하여 제거한다.
- (3)타 선박의 간섭파(Interference): 화면상에 넓은 나선형으로 눈이 내리는 것처럼 어느방향에나 생기며

간섭파 제거장치 (interference)로 조정할 수 있다.		
(4)맹목구간(Blind Sector) : 본선 구조물에 의해 전파가 차단되어 탐지하지 못하는 구역.		
(()밴드 레이더가 맹목구간이 더 심하다. 왜? ->)		
(5)()현상(Shadow Effector) : 전파가 차단되어 약해지는 현상		
(6)() 현상 : 단파통신에서 통신이 수십초~수시간 두절되는 현상.		
*전파의 소실 현상을 ()이라고 한다.		
*맹목구간 측정하는 방법 (1)구명정을 타고 본선 주위를 360도 돌아서, 어디서 구명정이 안보이는지 확	Fol	
(2)소형선이나 부표 주위를 선회하여 어디서 안보이는지 확인		
(3)()가 내릴 때 어느부분이 안보이는지 확인		
(4)()가 어디서 안보이는지 확인		
(4)		
9. 레이더의 거짓상		
·· 『 · · · · · · · · · · · · · · · · ·		
진영상과 ()거리, ()방향으로 생긴다.		
수정 - ()한다.		
· • · · · · · · · · · · · · · · · · · ·		
(2)다중반사 : 원인 - 정횡에 있는 ()에 레이더 파가 반사되어 돌아오는 것으로,	011 7101	-1~-11
거짓상은 ()방향에 ()거리 간격으로 발생한다. 이중에서 가장 ()였	있는 것이	신영상
수정 - ()or ()조절		

(3)거울면 반사 : 원인 - 안벽이나 고층빌딩과 같이 매끄러운 거울면에 전파가 반사되어 거짓상이 생기는 것으로 반사되는 물표(안벽, 고층빌딩 등)과 ()되는 곳에 거짓상이 생긴다. 수정 - () (4)측엽효과 : 원인 - 본선과 가까운 거리에 큰 물체가 있는 경우 진영상을 중심으로 해서 ()모양으로 진영상의 양쪽에 원호 모양의 거짓상이 생긴다(7도 90도) 수정 - () (5)2차 소인반사 : 원인 - ()(=기상현상)로 인하여 최대탐지거리의 바깥에 있는 물표가 탐지되는 현상이다. 진영상과 거짓상은 방위는 같고 거리는 다르게 나타난다. 수정 - range scale을 조절한다. 10. 레이더의 거리측정오차 (1)방위측정오차 : 원래의 휘점크기에서 수평빔폭의 1/2만큼 ()로 확대되어 나타난다. (2)거리측정오차 : 원래의 휘점크기에서 ()로 확대되어 나타난다. -> 가변거리 조정기(VRM)이용 *가변거리조정기(VRM)은 기존의 고정거리환보다 ()하다. 물체의 ()이 고정거리환과 맞닿아 있을 때 측정하는 것이 정확하다. 그림그리기 ->

- 11. 연안항해에서의 레이더 이용 (정확한 순서대로)
- (1)레이더 거리 + 실측방위 (<-가장 정확)
- (2)레이더 거리 + 레이더 거리
- (3)레이더 방위 + 실측거리
- (4)레이더 방위 + 레이더 방위 (<-가장 부정확)
- 12. 레이더의 각종 조정기
- -전원스위치: ON/OFF/STAND-BY 3단계로 구성.

전원을 켤때는 반드시 2~4분정도 예열을 해줘야 한다.

항해중에 사용을 잠시 중단했다가 다시 사용할 경우에는 OFF가 아니라 ()상태로.

- -감도조정기(Gain): 근거리 사용시에는 정밀도를 높게 하기위해 gain을 ()하고
 - 원거리 사용시에는 탐지능력을 좋게 하기 위해 gain을 ()한다.
- -휘도 조정기(Brilliance): ()의 밝기를 조정(주의, Dimmer는 스위치 밝기 조절용임)

()를 '겨우' 알 수 있을 정도로만 밝게 하는 것이 좋다.

- -해면반사억제기(STC), 우설반사억제기(FTC)
- -전자식 방위선(): 방위오차 중 '시차'가 발생하지 않는다.
- -가변거리 조정기(): 고정거리환보다 정확도가 떨어진다.
- -중심이동 조정기(Off Center): 원래는 소인선의 중심이 본선의 위치인데, 본선의 위치를 화면 중앙이 아니라 다른 곳으로 둘 수 있는 장치
- -조명등 조절기(Dimmer)

13. 레이더 플로팅(Plotting)

다른 선박과의 충돌 가능성을 확인할 수 있음. 최근접점(CPA)과 예상도달시간(TCPA)를 통해서 타선의 침로와 속력등을 계산하는 방법이다.

- *계산을 쉽게 하기 위해 ()분, ()분 단위로 플로팅을 한다.
- *여유를 두기 위해 ()내외의 여유시기를 두고 행한다.
- *()변화가 없이 거리가 가까워 지는 목표물을 주의한다.
- + 자동 레이더 플로팅장치 (ARPA) 총톤수 10,000톤 이상 선박 의무 설치
- : 일반 선박용 레이더에 자동으로 플로팅하는 장치를 설치한 것으로, 복잡한 움직임을 하는 여러개 목표물을 화면상에 항해사가 알기 ()표시하여 준다.

탐지->인지->포착->추적->표시->경보 단계로 이루어 진다.

```
<인지> (1)수동인지 (2)자동인지 가 있으며
    )인지 같은 경우에는 사용자가 수동으로 조이스틱, 트랙볼 등을 이용하여 필요한 목표만을 가려 인지.
    )인지 같은 경우에는 사용자가 설정해놓은 구역에 대하여 ( )가 자동적으로 인지한다.
〈추적〉목표물을 컴퓨터가 지속적으로 파악하는 과정이다.
수동인지만 가능한 경우에는 최소 ( )개의 목표물을 추적할 수 있어야 하며
자동인지가 가능한 경우에는 최소 ( )개의 목표물을 추적할 수 있어야 한다(->컴퓨터가 하기 때문)
<벡터> ( )벡터는 추적중인 목표물에 대하여 목표물과의 ( )여부를 쉽게 알 수 있다.
      )벡터는 추적중인 목표물의 ( )와 ( )을 쉽게 알 수 있다. 특히 ( - 본선이 타선을 바라보는 방
위각과 타선의 선수미선이 이루는 각)를 파악하는데 있어 ( )벡터가 이용된다.
<속도> ARPA를 충돌예방을 위한 장치로 활용하는 경우, 속력은 ( )을 이용해야 한다.
(왜? 대지속력을 사용하면 실제의 선수방위와 진벡터가 불일치 할 수 있기 때문)
〈화면과 경보〉
언제 경보를 울리나?
(1)CPA범위 내에 들어왔을 때
(2)( )내에 물표가 들어온 경우
```

(3)시스템 고장

(4)인지 과정에서 포착수가 ()까지 가득한 경우 (5)물표 상실경보 (약한 반사파일 때/해면반사/맹목구간)

내브라인?(Nav. Line) -> TSS, 앵커리지(정박지), 해안선 등을 화면상에 설정하는 선
()속력을 이용한다. (대수속력을 이용할 경우 속력오차로 인해 기준목표와 불일치 할 수 있기 때문에 이를 방지하기 위함)
ARPA의 오차 (1)레이더 및 센서 자체의 오차
(2)APRA자체의 오차 : () - 복잡한 움직임을 하는 물표의 움직임을 단순화할 때 생기는 오차
() - 추적중인 목표물이 다른물표와 장시간 가까이 있었을 때 추적 대상이 다른 대상으로 옮겨가버리는 오차

(3)해석상의 오차 : 항해사의 실수나 경험부족